1. Il linguaggio della matematica: esercizi

Esercizio 1.5. Dire se le seguenti coppie di proposizioni sono o meno equivalenti.

- 1. $[P e (\operatorname{non} Q)] \circ [Q e (\operatorname{non} P)], \qquad (P \circ Q) e [\operatorname{non}(P e Q)];$
- 2. $P \Rightarrow (P \circ Q), \qquad P \Rightarrow (P \circ Q);$
- 3. $(P \circ Q) \Rightarrow P$, $(P \circ Q) \Rightarrow P$;
- 4. $(P e Q) \Rightarrow R$, $(P \Rightarrow R) e (Q \Rightarrow R)$;
- 5. $P \Rightarrow (Q \circ R)$, $(P \Rightarrow R) \circ (Q \Rightarrow R)$.

 \boxed{R} 1. Le tabelle di verità delle due proposizioni risultano entrambe uguali a

P	Q	
V	V	F
V	F	V
F	V	V
F	F	F

Avendo la stessa tabella di verità le due proposizioni sono equivalenti.

- 2. Non sono equivalenti perchè quando P è vera e Q è falsa, la prima proposizione è vera mentre la seconda è falsa.
- 3. Non sono equivalenti.
- 4. Risulta

P	Q	R	$(P e Q) \Rightarrow R$
V	V	V	V
V	V	F V	V F V
V	F	V	V
V	F F V	F V F V	V
V F F F F	V	V	V
F	V	\mathbf{F}	V
F	F F	V	V
F	\mathbf{F}	\mathbf{F}	V

P	Q	R	$(P \Rightarrow R) e (Q \Rightarrow R)$
V	V	V	V
I V	V	F,	Į Ę
V	E	V	V V
V	F	F.	\mathbf{F}
F	V V	V	$\stackrel{ m V}{ m F}$
F F	E	Γ V	V
F	F	F	$\stackrel{ m V}{ m V}$

Le tabelle di verità sono diverse, quindi le proposizioni non sono equivalenti. 5. Le due proposizioni non sono equivalenti poiché quando P e Q sono vere e R è falsa, la prima proposizione risulta vera mentre la seconda è falsa.

Esercizio 1.7. Negare le seguenti proposizioni in modo che la negazione compaia il più internamente possibile.

1.
$$\exists x : (P(x) \circ Q(x));$$
 4. $\forall x : (P(x) \circ Q(x));$

2.
$$\exists x : (P(x) e Q(x));$$
 5. $\forall x : (P(x) e Q(x));$

3.
$$\exists x : (P(x) \Rightarrow Q(x));$$
 6. $\forall x : (P(x) \Rightarrow Q(x)).$

R 1. Si ha

$$\operatorname{non} \Big(\exists \, x \; : \; \big(P(x) \circ Q(x) \big) \Big) \quad \Longleftrightarrow \quad \forall \, x \; : \; \operatorname{non} \big(P(x) \circ Q(x) \big)$$

e, per la 3 di pagina 6, quest'ultima proposizione è equivalente a

$$\forall x : \operatorname{non}\left(\operatorname{non}\left(\operatorname{non}P(x)\right)\operatorname{e}\left(\operatorname{non}Q(x)\right)\right)\right)$$

e quindi a

$$\forall x : (\operatorname{non} P(x)) e (\operatorname{non} Q(x)).$$

2. Si ha

$$\mathrm{non}\Big(\exists\,x\ :\ \big(P(x)\,\mathrm{e}\,Q(x)\big)\Big)\quad\Longleftrightarrow\quad\forall\,x\ :\ \mathrm{non}\big(P(x)\,\mathrm{e}\,Q(x)\big)$$

e, per la 2 di pagina 5, quest'ultima proposizione è equivalente a

$$\forall x : \operatorname{non}\left(\operatorname{non}\left((\operatorname{non}P(x))\operatorname{o}\left(\operatorname{non}Q(x)\right)\right)\right)$$

e quindi a

$$\forall x : (\text{non } P(x)) \circ (\text{non } Q(x)).$$

3. Si ha

$$\operatorname{non}\left(\exists x : \left(P(x) \Rightarrow Q(x)\right)\right) \iff \forall x : \operatorname{non}\left(P(x) \Rightarrow Q(x)\right)$$

e, per quanto visto precedentemente, quest'ultima proposizione è equivalente a

$$\forall x : \operatorname{non}(\operatorname{(non} P(x)) \circ Q(x))$$

e $(\text{non } P(x)) \circ Q(x)$ equivale a $\text{non} (P(x) \circ (\text{non } Q(x)))$ (cfr. 3 di pagina 6) che, sostituita nella precedente, dà

$$(P(x) e non Q(x)) \forall x.$$